切比雪夫定理

 时间:2024-11-02 18:46:31

1、伯特兰-切比雪夫定理是指1845年约瑟•伯特兰提出的猜想。伯特兰检查了2至3×106之间的所有数。1850年切比雪夫证明了这个猜想。拉马努金给出较简单的证明,而保罗•艾狄胥则借二项式系数给出了另一个简单的证明。  伯特兰-切比雪夫定理说明:若整数n > 3,则至少存在一个质数p,符合n < p < 2n − 2。另一个稍弱说法是:对于所有大于1的整数n,存在一个质数p,符合n < p < 2n。

2、切比雪夫定理(Chebyshev's theorem):适用于任何数据集,而不论数据的分布情况如何。与平均数的距离在z个标准差之内的数值所占的比例至少为(1-1/z2),其中z是大于1的任意实数。至少75%的数据值与平均数的距离在z=2个标准差之内;至少89%的数据值与平均数的距离在z=3个标准差之内;至少94%的数据值与平均数的距离在z=4个标准差之内;

3、经验法则(Empirical Rule):需要数据符合正态分布。大约68%的数据值与平均数的距离在1个标准差之内;大约95%的数据值与平均数的距离在2个标准差之内;几乎所有的数据值与平均数的距离在3个标准差之内;

切比雪夫定理
  • 正态分布相加减规则是什么
  • 求矩估计量和矩估计值和极大似然估计值,详细过程
  • 二项分布的最大似然估计量怎么求
  • 置信区间计算公式是什么
  • 泊松分布可加性是什么
  • 热门搜索
    焯怎么读 胡萝卜用英语怎么说 耳鸣是什么原因引起的怎么治疗 花城为什么怕谢怜碰她 蒜蓉小龙虾怎么做 烧饼的做法视频 乌江鱼的做法 candy怎么读 韬怎么读 手指关节疼痛是怎么回事